TfidfVectorizer
概要 すでに語り尽くされた感のあるネタですが、TF-IDFで文書の重要な単語(重要語、あるいは特徴語)を抽出してみます。 numpyとsklearnを使うと、10行程度のコードで実現できるので簡単です。スポンサーリンク (adsbygoogle = window.adsbygoogle || []).p…
目次 はじめに――長年の疑問 検証 結果 tf-idfは死んだのか? まとめ はじめに――長年の疑問 自然言語処理でテキスト分類などに、よくtf-idfが使われます(最近はそうでもないのかもしれないが)。一般には、tf-idfを使うことで分類精度の向上効果があると認識…
sklearnのCountVectorizerを使うとBoW(Bag of Words)の特徴量が簡単に作れます。 ただし、指定するパラメタが多かったり、デフォルトで英語の文字列を想定していたりして若干とっつきづらい部分もあります。 この記事ではCountVectorizerの使い方を簡単に説…